Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

N-(*tert*-Butoxycarbonylglycyl- α , β dehydrophenylalanylglycylphenylalanyl)-4-nitroaniline

Krzysztof Ejsmont, Maciej Makowski and Jacek Zaleski*

Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland Correspondence e-mail: zaleski@uni.opole.pl

Received 27 September 2000 Accepted 16 November 2000

In the crystal structure of the tetrapeptide $Boc^0-Gly^1-\Delta Phe^2-Gly^3-Phe^4-p-NA$ (*p*-NA is *para*-nitroaniline), $C_{33}H_{36}N_6O_8$, there are two independent molecules differing in conformation in the asymmetric part of the unit cell. All the amino acids in the peptide are linked *trans* to each other. The torsion angles in the main chain of both molecules are close to the values of the type β -II turn. Two intramolecular and three intermolecular N-H···O hydrogen bonds stabilize the conformation of each of the molecules.

Comment

The α,β -dehydroamino acid residues have been found to occur naturally in several microbial peptides and antibiotics (Noda et al., 1983; Spatola, 1983). Their presence in peptides confers increased resistance to enzymatic degradation and for this reason many highly active analogues of bioactive peptides have been designed and synthesized (Fisher et al., 1981; Costa et al., 1983; Sharma & Chauhan, 1988). In particular, α,β dehydrophenylalanine (Δ Phe) residues exhibit preferential secondary structural features both in the solid state and in solution. Determination of the crystal and molecular structure of many Δ Phe-containing peptides has provided evidence that Δ Phe is a strong inducer of β -bends (Venkatachalam, 1968) in short sequences with a single Δ Phe residue (Główka *et al.*, 1987; Główka, 1988; Aubry et al., 1991) and of 310-helical structures in long sequences (Rajashankar et al., 1992; Padmanabhan & Singh, 1993; Rajashankar, Ramakumar, Jain & Chauhan, 1995; Rajashankar, Ramakumar, Mal et al., 1995; Jain et al., 1997). Additionally, the final conformation of any Δ Phe peptide depends upon the number and position of Δ Phe residues as well as the nature of the amino acids flanking them (Rajashankar et al., 1996).

We present here the crystal structure of a tetrapeptide containing one Δ^{Z} Phe between two flexible glycine residues and one phenylalanine, *i.e.* Boc⁰–Gly¹– Δ Phe²–Gly³–Phe⁴–*p*-NA (*p*-NA is *para*-nitroaniline), (I). In the independent part of the unit cell, there are two independent molecules (*A* and

B) differing in conformation (Fig. 1). The bond lengths and angles for the two molecules are the same within 5σ (Table 1).

The $C_{\alpha} = C_{\beta} (C8 - C9 \text{ and } C8' - C9')$ distances for the Δ Phe residue in A and B agree well with the standard double-bond distance observed in structures containing Δ Phe (e.g. Główka, 1988). The conjugation of the aromatic ring with the $C_{\alpha} = C_{\beta}$ bond is extended to the N-C_{α} (N2-C8 and N2'-C8') and C_{α} -C (C8-C16 and C8'-C16') bonds. A shortening of about 0.35 Å for N–C_{α} and 0.55 Å for C_{α}–C is observed with respect to the corresponding bonds in the saturated Phe⁴ unit (N4-C19, N4'-C19', C19-C27 and C19'-C27'). The steric contacts between the side-chain and main-chain atoms of the Δ Phe residue are partly relaxed by rearrangement of the bond angles at C_{α} and C_{β} atoms. For example, the $N-C_{\alpha}=C_{\beta}$ (N2-C8-C9 and N2'-C8'-C9') angles are increased from the value of 120° by $ca 4^\circ$, whereas the $C_\beta = C_\alpha - C (C9 - C8 - C)$ C16 and C9'-C8'-C16') angles are reduced by $ca 2^{\circ}$. Similar effects are observed in Boc-Val- Δ Phe- Δ Phe- Δ Phe-Val-OMe (Jain et al., 1997).

All the amino acids in the peptide are linked *trans* to each other with a deviation of ω from 180° of less than *ca* 6° [with the exception of 11.8 (2)° for ω^4 for the *A* molecule]. The torsion angles in the main chains of both molecules and the (Φ/Ψ) of Gly¹ and Δ^Z Phe² approximate the values assigned to the amino acid residues in the corners of a type II β -turn. The intramolecular hydrogen bonds between the amide (N3 and N3') of Gly³ and the carboxyl (O2 and O2') of the Boc groups are similar to those observed in Boc–Gly– Δ Phe–Gly–OMe (Główka, 1988). The torsion angles χ^1 [–7.4 (4) and 9.2 (4)°], $\chi^{2,1}$ [–27.9 (4) and 29.5 (4)°] and $\chi^{2,2}$ [155.0 (2) and –154.1 (2)°] of the Δ Phe residue suggest that the side chains in the *A* and *B* molecules are planar.

The two Gly residues adopt a conformation known as a polyglycine helix (Walton, 1981), with Φ and Ψ close to 80 and -150° , respectively. The relative inclination of the planes of the two Gly units is 37.5 (3)° for *A* and 31.5 (3)° for *B*. The torsion angles for the Boc group (ω^0 and Φ^0) in both molecules (*A* and *B*) correspond to a *trans-trans* conformation. This makes it possible for O2 (Boc) atoms to take part in an intramolecular N3–H3D···O2 hydrogen bond (Table 2). The carbonyl oxygen of Δ Phe² takes part in another intramolecular hydrogen bond with the amide group of *p*-NA. Those

two intramolecular hydrogen bonds stabilize the conformation of both molecules. Each of the molecules is connected to three others by $N-H \cdots O$ hydrogen bonds of medium strength.

The molecular structure (molecules A and B) of Boc-Gly- Δ Phe-Gly-Phe-p-NA. Displacement ellipsoids are shown at the 50% probability level. Dashed lines indicate intramolecular hydrogen bonds.

Experimental

Boc-Gly- Δ Phe-Gly-Phe-*p*-NA was synthesized according to the method of Makowski et al. (2001). Crystals suitable for X-ray structure analysis were grown from an ethyl acetate-diethyl ether (1:1)/ hexane solution.

Crystal data

C ₃₃ H ₃₆ N ₆ O ₈	<i>Z</i> = 2
$M_r = 644.68$	$D_x = 1.323 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 10.328 (2) Å	Cell parameters from 29
b = 11.605 (2) Å	reflections
c = 14.796 (3) Å	$\theta = 5-12^{\circ}$
$\alpha = 70.00 \ (3)^{\circ}$	$\mu = 0.096 \text{ mm}^{-1}$
$\beta = 86.37 \ (3)^{\circ}$	T = 105 (2) K
$\gamma = 76.19 \ (3)^{\circ}$	Plate, yellow
$V = 1617.9 (5) \text{ Å}^3$	$0.5 \times 0.4 \times 0.3 \text{ mm}$

Data collection

Kuma KM-4 diffractometer	$h = -12 \rightarrow 12$
ω scans	$k = -13 \rightarrow 12$
11299 measured reflections	$l = -16 \rightarrow 16$
5804 independent reflections	2 standard reflections
5429 reflections with $I > 2\sigma(I)$	every 50 reflections
$R_{\rm int} = 0.029$	intensity decay: 0.34%
$\theta_{\rm max} = 26.06^{\circ}$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0814P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.032$	+ 0.1142P]
$wR(F^2) = 0.105$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.018	$(\Delta/\sigma)_{\rm max} = 0.011$
5804 reflections	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
847 parameters	$\Delta \rho_{\rm min} = -0.37 \mathrm{e} \mathrm{\AA}^{-3}$
H-atom parameters constrained	

Table 1 Selected geometric parameters (Å, °).

N2 - C81.421 (3) N2' - C8'1.413 (3) 1.454 (3) N4'-C19' N4-C19 1.454 (3) 1.339 (4) C8′-C9′ 1.339 (4) C8 - C9C8-C16 1.489 (4) C8' - C16'1.488 (4) C19′-C20′ 1.529 (4) 1.531 (4) C19-C20 C19′-C27′ C19-C27 1.537 (4) 1.543 (4) C9-C8-N2 124.1 (2) C9'-C8'-N2' 124.3 (2) C9-C8-C16 118.1(2)C9'-C8'-C16' 117.5 (2) N2-C8-C16 N2' - C8' - C16117.8 (2) 117.6(2)

Table 2 Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
$N1 - H1A \cdots O3'^{i}$	0.90	2.06	2.898 (3)	154
$N2 - H2D \cdots O5'^{ii}$	0.90	2.04	2.879 (3)	156
$N_3 - H_3 D \cdots O_2$	0.90	2.27	3.053 (3)	145
N4-H4 D ···O4' ⁱⁱⁱ	0.90	2.06	2.917 (3)	160
$N5-H5A\cdots O4$	0.90	2.09	2.917 (3)	153
$N5-H5A\cdots N4$	0.90	2.26	2.724 (3)	112
$N1' - H1'A \cdots O3^{iv}$	0.90	2.16	2.965 (3)	149
$N2' - H2'D \cdots O5^{v}$	0.90	1.83	2.693 (3)	159
$N3' - H3'D \cdots O2'$	0.90	2.46	3.215 (3)	141
$N4' - H4'D \cdots O4^{vi}$	0.90	2.05	2.873 (3)	151
$N5' - H5'A \cdots O4'$	0.90	2.13	2.964 (3)	153
$N5' - H5'A \cdots N4'$	0.90	2.28	2.737 (3)	111

Symmetry codes: (i) x, y, 1 + z; (ii) x, y - 1, 1 + z; (iii) 1 + x, y - 1, 1 + z; (iv) x, y, z - 1; (v) x, 1 + y, z - 1; (vi) x - 1, 1 + y, z - 1.

The structure is non-centrosymmetric since both molecules have the same configuration (S on C19 and C19'). Refinement in the centrosymmetric $P\overline{1}$ space group was attempted and gave an R value of ca 12%. In the absence of any significant anomalous scatterers, the Friedel equivalents were merged and the absolute configuration set by reference to that of natural phenylalanine. H atoms were treated as riding with N-H = 0.90 Å and C-H = 0.96 Å.

Data collection: Kuma Diffraction Software (Kuma, 1998); cell refinement: Kuma Diffraction Software; data reduction: Kuma Diffraction Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Table 3Important torsion angles (°).

Angle	Molecule A	Molecule B
Φ ⁰ C6-N1-C5-O1	-169.8(2)	164.0 (2)
$\omega^0 C1 - O1 - C5 - N1$	-179.1(2)	-176.1(2)
Φ^1 C5-N1-C6-C7	53.9 (3)	-52.7(3)
$\omega^1 C8 - N2 - C7 - C6$	177.4 (2)	-178.3(2)
Ψ^1 N1-C6-C7-N2	-143.8(2)	149.3 (2)
Φ^2 C7-N2-C8-C16	-59.3 (3)	49.9 (3)
χ^{1} N2-C8-C9-C10	-7.6(4)	9.2 (5)
$\chi^{2,1}$ C8-C9-C10-C11	-27.8(4)	29.5 (5)
$\chi^{2,2}$ C8-C9-C10-C15	155.1 (2)	-154.2(3)
ω^2 C17-N3-C16-C8	-178.0(2)	175.3 (3)
Ψ^2 N2-C8-C16-N3	-19.2(3)	29.0 (3)
Φ ³ C16-N3-C17-C18	55.1 (2)	-55.6(3)
ω^{3} C19-N4-C18-C17	-175.9(2)	173.9 (2)
Ψ^3 N3-C17-C18-N4	-135.0(2)	130.1 (2)
Φ ⁴ C18-N4-C19-C27	-91.3(2)	61.4 (3)
$\omega^4 C28 - N5 - C27 - C19$	168.2 (2)	175.0 (2)
Ψ^4 N4-C19-C27-N5	16.8 (3)	20.7 (3)

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD1118). Services for accessing these data are described at the back of the journal.

References

- Aubry, A., Pietrzyński, G., Rzeszotarska, B., Boussard, G. & Marraud, M. (1991). Int. J. Pept. Protein Res. 37, 39–45.
- Costa, T., Shimohigashi, Y., Stammer, C. H. & VanVoigtlender, P. F. (1983). Int. J. Pept. Protein Res. 22, 489–499.

- Fisher, G. H., Berryer, P., Rayan, J. W., Chauhan, V. S. & Stammer, C. H. (1981). Arch. Biochem. Biophys. 211, 269–275.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Główka, M. L. (1988). Acta Cryst. C44, 1639-1641.
- Główka, M. L., Gilli, G., Bertolasi, V. & Makowski, M. (1987). Acta Cryst. C43, 1403–1406.
- Jain, R. M., Rajashankar, K. R., Ramakumar, S. & Chauhan, V. S. (1997). J. Am. Chem. Soc. 119, 3205–3211.
- Kuma (1998). Kuma Diffraction Software. Versions 8.1.0 and 8.1.1. Kuma Diffraction, Wrocław, Poland.
- Makowski, M., Kafarski, P., Paweczak, M. & Latajka, R. (2001). J. Pept. Sci. Accepted.
- Noda, K., Shimohigashi, Y. & Izumiya, N. (1983). *Peptides: Analysis, Synthesis, Biology*, Vol. 5, edited by E. Gross & J. Meienhofer, pp. 285–339. New York: Academic Press.
- Padmanabhan, B. & Singh, T. P. (1993). Biopolymers, 33, 613-619.
- Rajashankar, K. R., Ramakumar, S. & Chauhan, V. S. (1992). J. Am. Chem. Soc. 114, 9225–9226.
- Rajashankar, K. R., Ramakumar, S., Jain, R. M. & Chauhan, V. S. (1995). J. Am. Chem. Soc. 117, 11773–11779.
- Rajashankar, K. R., Ramakumar, S., Mal, T. K., Jain, R. M. & Chauhan, V. S. (1995). *Biopolymers*, **35**, 141–147.
- Rajashankar, K. R., Ramakumar, S., Mal, T. K., Jain, R. M. & Chauhan, V. S. (1996). Angew. Chem. Int. Ed. Engl. **35**, 765–768.
- Sharma, A. K. & Chauhan, V. S. (1988). Int. J. Pept. Protein Res. 31, 225–230.
- Sheldrick, G. M. (1990). *SHELXTL*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spatola, A. F. (1983). Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, Vol. VII, edited by B. Weinstein, pp. 267–357. New York: Marcel Dekker.
- Venkatachalam, C. M. (1968). Biopolymers, 6, 1425-1436.
- Walton, A. G. (1981). Polypeptides and Protein Structure, pp. 30–49. New York: Elsevier.